Improper Restriction of Operations within the Bounds of a Memory Buffer
CVE-2017-6738
Summary
The Simple Network Management Protocol (SNMP) subsystem of Cisco IOS and IOS XE Software contains multiple vulnerabilities that could allow an authenticated, remote attacker to remotely execute code on an affected system or cause an affected system to reload. An attacker could exploit these vulnerabilities by sending a crafted SNMP packet to an affected system via IPv4 or IPv6. Only traffic directed to an affected system can be used to exploit these vulnerabilities. The vulnerabilities are due to a buffer overflow condition in the SNMP subsystem of the affected software. The vulnerabilities affect all versions of SNMP - Versions 1, 2c, and 3. To exploit these vulnerabilities via SNMP Version 2c or earlier, the attacker must know the SNMP read-only community string for the affected system. To exploit these vulnerabilities via SNMP Version 3, the attacker must have user credentials for the affected system. A successful exploit could allow the attacker to execute arbitrary code and obtain full control of the affected system or cause the affected system to reload. Customers are advised to apply the workaround as contained in the Workarounds section below. Fixed software information is available via the Cisco IOS Software Checker. All devices that have enabled SNMP and have not explicitly excluded the affected MIBs or OIDs should be considered vulnerable. There are workarounds that address these vulnerabilities.
- LOW
- NETWORK
- HIGH
- UNCHANGED
- NONE
- LOW
- HIGH
- HIGH
CWE-119 - Buffer Overflow
Buffer overflow attacks involve data transit and operations exceeding the restricted memory buffer, thereby corrupting or overwriting data in adjacent memory locations. Such overflow allows the attacker to run arbitrary code or manipulate the existing code to cause privilege escalation, data breach, denial of service, system crash and even complete system compromise. Given that languages such as C and C++ lack default safeguards against overwriting or accessing data in their memory, applications utilizing these languages are most susceptible to buffer overflows attacks.
References
Advisory Timeline
- Published